Toeplitz Determinant whose Its Entries are the Coefficients for Class of Non-Bazilevi´c Functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

Ostrowski type inequalities for functions whose derivatives are preinvex

In this paper‎, ‎making use of a new identity‎, ‎we establish new‎ ‎inequalities of Ostrowski type for the class of preinvex functions and‎ ‎gave some midpoint type inequalities‎.

متن کامل

Noncirculant Toeplitz Matrices All of Whose Powers Are Toeplitz

Let a, b and c be fixed complex numbers. Let Mn(a, b, c) be the n×n Toeplitz matrix all of whose entries above the diagonal are a, all of whose entries below the diagonal are b, and all of whose entries on the diagonal are c. For 1 6 k 6 n, each k × k principal minor of Mn(a, b, c) has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polyno...

متن کامل

Some Perturbed Inequalities of Ostrowski Type for Functions whose n-th Derivatives Are Bounded

We firstly establish an identity for $n$ time differentiable mappings Then, a new inequality for $n$ times differentiable functions is deduced. Finally, some perturbed Ostrowski type inequalities for functions whose $n$th derivatives are of bounded variation are obtained.

متن کامل

ostrowski type inequalities for functions whose derivatives are preinvex

in this paper‎, ‎making use of a new identity‎, ‎we establish new‎ ‎inequalities of ostrowski type for the class of preinvex functions and‎ ‎gave some midpoint type inequalities‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2020

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1660/1/012091